Course Offerings
I310D- Introduction to Human-Centered Data Science is a survey course that introduces students to the theory and practice of data science through a human-centered lens, with emphasis on how design choices influence algorithmic results. Students will gain comfort and facility with fundamental principles of data science including (a) Programming for Data Science with Python (b) Data Engineering (c) Database Systems (d) Machine Learning and (e) Human centered aspects such as privacy, bias, fairness, transparency, accountability, reproducibility, interpretability, and societal implications. Each week’s class divided into two segments: (a) Theory and Methods, a concise description of theoretical concept in data science, and (b) Tutorial, a hands-on session on applying the theory just discussed to a real-world task on publicly available data. We will use Python for programming and cover Python basics in the beginning of the course. For modules related to databases, we will use PostGre SQL.
An introduction to sociotechnical perspectives on information systems, their effects, and how we intervene to make them better.
No description provided.
The class explores the principles of relational database design, and SQL as a query language in depth.
Principles and practices in Data Engineering. Emphasis on the data engineering lifecycle and how to build data pipelines to collect, transform, analyze and visualize data from operational systems. This is a hands-on and highly interactive course. Students will learn analytical data modeling techniques for organizing and querying data. They will learn how to transform data into dimensional models, how to build data products, and how to visualize the data. We will also examine the various roles data engineers can have in an organization and career paths for data professionals
This course will cover relevant fundamental concepts in machine learning (ML) and how they are used to solve real-world problems. Students will learn the theory behind a variety of machine learning tools and practice applying the tools to real-world data such as numerical data, textual data (natural language processing), and visual data (computer vision). Each class is divided into two segments: (a) Theory and Methods, a concise description of an ML concept, and (b) Lab Tutorial, a hands-on session on applying the theory just discussed to a real-world task on publicly available data. We will use Python for programming. By the end of the course, the goals for the students are to: 1. Develop a sense of where to apply machine learning and where not to, and which ML algorithm to use 2. Understand the process of garnering and preprocessing a variety of “big” real-world data, to be used to train ML systems 3. Characterize the process to train machine learning algorithms and evaluate their performance 4. Develop programming skills to code in Python and use modern ML and scientific computing libraries like SciPy and scikit-learn 5. Propose a novel product/research-focused idea (this will be an iterative process), design and execute experiments, and present the findings and demos to a suitable audience (in this case, the class).
Practical skills and understandings required to effectively work with open source software and understand the projects that build them. Includes git-based collaboration as well as conceptual understanding of licenses, security, technical and social processes in open source development. Class projects involve working with digital trace data from open source repositories.
This course offers students in Information Science a comprehensive exploration into the theories, techniques, and tools of data visualization. It is designed to equip students with the skills to effectively communicate complex information visually, enabling data analysis and decision-making. Through a combination of lectures, hands-on projects, and case studies, students will learn how to design and implement effective and aesthetically appealing data visualizations for a variety of data types and audiences. Upon successful completion of this course, students will be able to: • Understand the principles and psychology of visual perception and how they influence data visualization. • Critically evaluate the effectiveness of different data visualization techniques for varying data types and user needs. • Master the use of leading data visualization tools and libraries such as D3.js, or Tableau. • Develop interactive dashboards and reports that effectively communicate findings to both technical and non-technical audiences. • Apply design principles to create visually appealing, accurate, and accessible data visualizations.
Introduction to the emerging field of Explainable Artificial Intelligence (XAI) from the perspectives of a developer and end-user. Students will gain hands-on experience with some of the most commonly used explainability techniques and algorithms.
Leveraging Text Mining, Natural Language Processing, and Computational Linguistics to address real-world textual data challenges, including document processing, keyword extraction, question answering, translation, summarization, sentiment analysis, search, recommendation, and information extraction. Each week, classes include (a) Theory and Methods for NLP concepts and (b) Lab Tutorials for practical application with Python on multilingual text datasets.
This course lays the foundation for data science education targeting health informatics students interested in learning more broadly about biomedical informatics. No previous coding experience is required. The students will be introduced to basic concepts and tools for data analysis. The focus is on hands-on practice and enjoyable learning. The course will use python as the programming language, and Jupyter Notebooks as the development environment (our “home base”) for the examples, tutorials, and assignments. We use Jupyterlab Notebooks because they are both the industry standard and a nice way to load, visualize, and analyze data and describe our findings in one environment. We will also learn GitHub to document changes and backup our work and, eventually, for use as a collaboration tool. Hands-on data analysis, final projects, and associated presentations will be mandatory for the completion of the course. The outcome for the class is that each student will have a GitHub repository with all of their work (Jupyter notebooks, data, etc.), including a final project that will be presented to the class. Specific topics to be covered include GitHub, Linux/Unix File system, Jupyter Notebooks, Python Programming, and Data Visualization.
This course offers an introduction to Fine-Tuning Open-Source Large Language Models (LLMs) through project-based applications and real-world examples. The course will begin with a foundational understanding of Natural Language Processing (NLP), focusing on Text Preprocessing techniques such as Tokenization and Vectorization. A basic overview of Large Language Models will be provided, covering the fundamental structure and architecture of commonly used Open-Source Frameworks. The course will then focus on three key methods for fine-tuning LLMs: Self-Supervised, Supervised and Reinforcement Learning. Each method will be explored through both theoretical explanations and practical group-based projects, applying these concepts to real-world examples. Students will engage in hands-on projects to strengthen their understanding of how to customize and optimize LLMs for specific tasks or domains.
Civic engagement involves joining with others to identify and address issues facing a community. Examples include volunteering to clean up a park, participating in a town hall meeting, and voting. Conversations about civic issues emerge in many public and private spaces, including public libraries, coffeeshops, and through group messaging platforms, like WhatsApp. This course will investigate how computing systems have been used to help people surface issues in various ways---from community sensing systems to crowdsourcing budget issues---as well as address issues through online discussion, mutual-aid, and coordinating volunteer networks. Technology can serve as a force multiplier for civic engagement; however, there are important considerations related to their design, deployment, and sustaining them over time. Civic technology is embedded within a policy, political, and technical environment that can be tricky to navigate. Many people also lack access to the time and training to fully engage with a technology; failure to recognize these barriers related to the “digital divide” can result in systematically preventing some groups of people from participating in civic activities. Additionally, there may be unanticipated risks associated with the way that a civic technology collects, manages, and shares personal as well as group level information. These ethical issues deserve special consideration in a civic engagement and socio-technical context.
Online communities are important to our cultural, social, and economic lives and especially to how we find and share information. Yet they also threaten our well-being and may undermine critical social institutions as well as the integrity of public discourse. This course is an interdisciplinary inquiry that seeks to understand online communities. It covers the history of online communities from their origins in the pre-Internet to the rise of social media platforms and contemporary challenges and also the social, psychological, and human-computer interaction research that both explains the practical barriers to building an online community and motivates technical and organizational designs that aim to overcome them.
Explore common data collection, management, and sharing practices around information technology and emerging technologies such as AI. Students will gain hands on experiences with collecting, analyzing, and managing user data in ethical and responsible manners. Students will design data-driven systems that are centered around user consent, transparency, and social responsibilities.
Critical exploration of the intersection between digital technologies and information access in emerging economies. Investigate the historical, socio-economic, and ethical dimensions of digital adoption in the Global South, analyzing its impact on governance, economies, cultures, and societal dynamics. Emphasis on critical thinking, ethical considerations, and collaborative approaches to address challenges such as the digital divide(s), data sovereignty, and technology-driven inequality. Through case studies and practical exercises, students will develop skills in digital research, global cultures, policy analysis, and technology innovation with a focus on promoting inclusive and sustainable digital transformation in Global South contexts. Also offered as I 320J.
Practical skills and understandings required to effectively work with open source software and understand the projects that build them. Includes git-based collaboration as well as conceptual understanding of licenses, security, technical and social processes in open source development. Class projects involve working with digital trace data from open source repositories. Also offered as Informatics 320D.
This course examines disability beyond digital accessibility (i.e., web accessibility, user interface design) and focuses on disability from an organizational and socio-technical point of view. Students will learn about the legislation and policies impacting accessibility, the models that shape our perceptions of disability, and review case studies of disability in several contexts. In addition to the broader types of disabilities, we will consider other forms of disabilities (permanent, situational, temporary). Students will engage in class discussions, small group activities, homework assignments, and give oral presentations. Students will be equipped with the knowledge and skills to apply methods and models of accessibility in the workplace in various fields, including software design, data science, AI, and library science.
This class explores how to make arguments about and through design. The first half focuses on values, criticism, ethics, and analysis of technology, the latter portion aims to help a soon-to-graduate technologist envision positive social impact in a mission-driven enterprise. Students will practice synthesizing ethical tech considerations – as they will have to do for the rest of their careers – and combining this with an organizational mindset. Through exercises, role-playing, discussions, guest lectures from activist technologists, and wide-ranging readings, students will practice connecting broader implications of their designs with technical choices. Design for Social Impact seeks to arm students with diverse ways of reflecting on their authorial relationship to technology, drawing from art and design to political science and anthropology. Course participants will be encouraged to focus on areas of personal interest, enumerating the social, political, and economic parameters of particular technical systems: parameters that are as important as power consumption, usability, or efficiency.
Effective application of social and technical methods of analysis to specific existing systems with inseparable technical and social components to enable improvement. Covers techniques such as modeling, interviewing, observation, trace analysis, and benchmarking.
INF 382H: Legal Information Resources
In this course, you will gain exposure to legal reference questions and the reference interview, investigate legal research sources, and beome familiar with the methods and strategies for conducting legal reference and basic legal research.
INF 382L.03: Inquiry and Information Seeking in K-12
Examine inquiry models and information-seeking theories relevant to K-12 teaching and learning. Explore tools and resources for student learning and strategies for teaching specific information literacy skills within the context of a research-based inquiry.
History and ongoing evolution of instruction in library and information service settings; conceptions of information literacy; learning theories and pedagogical approaches; instructional design principles, including backward design; and reflective teaching practice.
INF 385S: Digital Libraries
This course explores the life cycle of a digital library/collection through various critical lenses and hands-on experiences. The objective of the course is for students to obtain a solid understanding of the theoretical frameworks, technical processes, and technologies needed to build meaningful, ethical, and reusable digital libraries.
This course examines key issues, challenges, and opportunities in the creation, management, and leadership of nonprofit organizations. Attention is given both to internal organizational issues and to nonprofits’ relationships with key external constituencies. Among the topics to be considered are nonprofit creation, mission management, organizational leadership, funding strategies, partnerships, and the impact of the public policy environment. Readings and discussion will examine nonprofits in varied fields of activity (such as human services and culture). Assignments and exercises will be employed to help develop presentation and grant writing skills. The course is organized in a seminar format and will employ exercises and cases to translate broad themes to practical issues related to nonprofit strategy and management. Guest speakers will periodically join us to share their own experiences building and running nonprofits (additional speakers may be added).
Disaster events, like floods and fires, can cause severe damage and loss in cultural heritage collections. How will you respond when disaster strikes? This course introduces students to the fundamental preservation concepts, planning strategies, and applied response techniques that make a difference. The class will evaluate the physical impact of fire, water, soot, mold, and insects on varied media, including books, flat paper, audiovisual materials, and other items. Disaster planning exercises model proactive methods to minimize damage. Hands-on response drills enable students to practice salvage techniques, and to triage and prioritize impacted materials.
The purpose of this course is to provide theoretical and practical foundations for information professionals who wish to design and evaluate search systems and services, taking user-centered approaches. This course explores search user interfaces, search behavior, search interaction, search user experience, search as learning, search for creativity, and research methods for understanding information behavior and evaluating search systems. Students will learn search behavior across various contexts, including academic and professional settings, everyday life, and digital learning environments. Students will gain insights into how people interact with, use, and evaluate information in a variety of application areas, such as web search engines, domain-specific search systems, digital libraries, social search platforms, and generative AI-based systems.
Learning key data wrangling maneuvers in abstract and implementations in SQL, Excel, R Tidyverse, and Python Pandas. Maneuvers in data transformations include Nest, Pivot, Mutate (inc. separate/unite), Group/Summarize and Rectangling. Projects include working with "wild caught" data datasets (usually CSV or JSON) and computational notebook environments (e.g., iPython, Jupyter, Rmarkdown, Quarto). Fall 2024 has changes from previous syllabus now that we have Database Design and Introduction to Programming. Nonetheless, the previous syllabus is still useful as it links to course materials that show the teaching approach and type of assignments. http://howisonlab.github.io/datawrangling/#Schedule_of_classes
Exhibits are a powerful way for libraries, archives, museums, and cultural institutions to engage the public with their collections. This course offers students the opportunity to plan and install an exhibit, focusing on objectives such as: crafting a narrative around physical objects; drafting exhibit text; accommodating media preservation issues; building basic display supports; and publicizing the exhibit. Students will learn about the historical origins of modern-day exhibit practices and will visit and evaluate current exhibits on campus and in the Austin area.
INF 387.05: School Library Management I
Designed for students pursuing Texas Education Agency (TEA) certification in school librarianship. Examine the philosophy, objectives, and management of the school library with an emphasis on standards and competencies, and the roles of the school librari
INF 387.06: School Library Management II
Designed for students pursuing Texas Education Agency (TEA) certification in school librarianship. Examine the philosophy, objectives, standards, and management of the school library with an emphasis on the roles of the school librarian as an instructiona
INF 387C: Managing Information Organizations
This course will develop your skills to effectively manage a library, or information organization. We’ll be looking at problems faced by many types of libraries: public, academic, school, special. We’ll examine staffing, budget, collection development, patron behavior, and managing the expectations of users.
INF 388R: Practicum in School Libraries
Designed for students pursuing Texas Education Agency (TEA) certification in school librarianship. 160 hours of field work in varied school library settings under the supervision of a qualified field supervisor and site supervisor.
Study of audio recording through a chronological examination of the development of recording; basic care and preservation of recordings; Preservation of audio archives; and stability concerns of audiovisual media.
Ever wondered how libraries and archives safeguard historical materials for future generations? Preservation is the answer. In this course, students learn collections care strategies that enable today’s information stewards to protect our growing cultural record. Scientific foundations and practical exercises will address common preservation challenges, such as environmental control, mold, insects, pollutants, and light damage. Modern topics in health, safety, and sustainability will highlight the developing nature of the field. Students will evaluate preservation risks for books, paper, electronic media, and other collections materials.