Course Offerings
Explore common data collection, management, and sharing practices in information technology and emerging technologies, such as search engines and AI systems. Students will read papers and engage in discussions about the pros and cons of established data practices and learn about the three main components of responsible data management: 1) consent and ownership, 2) privacy and anonymity, and 3) broader impact. Students will also practice how to collect data, make data-driven decisions, and design data-driven products through group projects as UX designers, researchers, and data scientists. The course will bring in interdisciplinary perspectives with guest speakers from archive science, engineering, and respponsible AI, to provide a holistic view of broader data ecosystems and infrastructures.
Develop prompts for text and image generation through an iterative cycle, making the most of foundation models, including large language models and diffusion models. Overview of the field of prompt engineering, including historical development, ethical dilemmas, and the creation of chatbots.
The current Web has experienced tremendous changes to connect data, people, and knowledge. There are a couple of exciting efforts trying to bring the Web to its full potential. The Semantic Web is one of them which is heavily embedded in the Artificial Intelligence area with the long-term goal to enhance the human and machine interaction by representing data semantics, integrating data silos, and enabling intelligent search and discovery. This course aims to provide the basic overview of the Semantic Web in general, and data semantics in particular, and how they can be applied to enhance data integration and knowledge inference. Ontology is the backbone of the Semantic Web. It models the semantics of data and represents them in markup languages proposed by the World Wide Web Consortium (W3C). W3C plays a significant role in directing major efforts at specifying, developing, and deploying standards for sharing information. Semantically enriched data paves the crucial way to facilitate the Web functionality and interoperability. This course contains three parts: Semantic Web language, RDF graph database (i.e., RDF triple store), and its applications. The fundamental part of the course is the Semantic Web languages. It starts from XML and goes further to RDF and OWL. The RDF graph database part introduces different APIs of Jena and its reasoners. The application part showcases current trends on semantic applications. Prerequisites Basic knowledge of HTML and XML is desired. Course Objectives This course aims to develop a critical appreciation of semantic technologies as they are currently being developed. At the end of this course, students should be able to: • sketch the overall architecture of the Semantic Web. • identify the major technologies of the Semantic Web and explain their roles. • illustrate the design principles of the Semantic Web by applying the technologies. • understand certain limitations of the Semantic Web technologies, and be aware of the kinds of services it can and cannot deliver. Course aims are achieved through: • Lectures covers basic knowledge of the Semantic Web • Projects applying semantic technologies to concrete problems of information delivery and use • Assignments of practicing and utilizing key semantic technologies
This course will cover fundamental concepts in Machine Learning (ML). The course will provide conceptual and practical knowledge on a wide range of modern machine learning algorithms; including supervised learning (multiple linear regression, logistic regression, neural networks, and decision trees), unsupervised learning (clustering, dimensionality reduction, recommender systems), reinforcement learning & deep learning models (CNN, RNN, Autoencoders & Transformers) and also introduce the importance of Prompt Engineering and Retrieval Augmented Generation. The goal is for students to be comfortable and confident in machine learning concepts and have the ablity to build machine learning model solution to challenging real-world problems. If you’re looking to break into AI or build a career in machine learning, this is a great place to start.
Natural Language Processing (NLP) is concerned with interactions between computers and humans through the medium of human languages. It involves analyzing, understanding, and generating human language, making it possible for machines to interpret and respond to human speech and text. NLP is currently making significant contributions to modern technological advancements and serves as the backbone of crucial applications such as Gen AI, Conversational AI, Question Answering, Human Language Translation, Summarization, Sentiment and Emotion Analysis, Search and Recommendation, and Information Extraction in various domains such as healthcare, finance, legal, libraries and education and beyond. The proposed graduate-level course aims to cover fundamental concepts in Natural Language Processing / Computational Linguistics and how they are used to solve real-world problems. Classes in each week will be divided into two segments: (a) Theory and Methods, a concise description of an NLP concept, and (b) Practicum, a hands-on session on applying the theory to a real-world task on publicly available multilingual text datasets. We will use Python for programming along with popular libraries for text processing such as NLTK, SpaCy and HuggingFace's transformers. By the end of the course, the goals for the students are to: 1. Understand the process of garnering and pre-processing a large amount of multilingual textual data from various domains and sources. Characterize the processes to store, load, pre-process multilingual data and apply language processing operations such as normalization, tokenization, lemmatization, chunking and machine readable representation (vector) extraction. 2. Train machine learning algorithms for natural language understanding and generation and evaluate their performance. 3. Learn to extract information from unstructured text and represent them in the form of knowledge graphs 4. Learn to use existing knowledge graphs, ontologies and lexical knowledge networks for predictive analysis on text 5. Learn about popular NLP applications and tasks and the process of building such applications 6. Propose a novel product/research-focused idea (this will be an iterative process), design and execute experiments, and present the findings and demos to a suitable audience (in this case, the class).
Introduction to combining human and machine intelligence to benefit people and society. Explore cutting-edge research on a number of subjects related to human-AI interaction, including the psychological and societal impacts of AI as well as design guidelines and methods for human-centered AI.
INF 385S: Digital Libraries
This course explores the life cycle of a digital library/collection through various critical lenses and hands-on experiences. The objective of the course is for students to obtain a solid understanding of the theoretical frameworks, technical processes, and technologies needed to build meaningful, ethical, and reusable digital libraries.
This course examines key issues, challenges, and opportunities in the creation, management, and leadership of nonprofit organizations. Attention is given both to internal organizational issues and to nonprofits’ relationships with key external constituencies. Among the topics to be considered are nonprofit creation, mission management, organizational leadership, funding strategies, partnerships, and the impact of the public policy environment. Readings and discussion will examine nonprofits in varied fields of activity (such as human services and culture). Assignments and exercises will be employed to help develop presentation and grant writing skills. The course is organized in a seminar format and will employ exercises and cases to translate broad themes to practical issues related to nonprofit strategy and management. Guest speakers will periodically join us to share their own experiences building and running nonprofits (additional speakers may be added).
Disaster events, like floods and fires, can cause severe damage and loss in cultural heritage collections. How will you respond when disaster strikes? This course introduces students to the fundamental preservation concepts, planning strategies, and applied response techniques that make a difference. The class will evaluate the physical impact of fire, water, soot, mold, and insects on varied media, including books, flat paper, audiovisual materials, and other items. Disaster planning exercises model proactive methods to minimize damage. Hands-on response drills enable students to practice salvage techniques, and to triage and prioritize impacted materials.
Learning key data wrangling maneuvers in abstract and implementations in SQL, Excel, R Tidyverse, and Python Pandas. Maneuvers in data transformations include Nest, Pivot, Mutate (inc. separate/unite), Group/Summarize and Rectangling. Projects include working with "wild caught" data datasets (usually CSV or JSON) and computational notebook environments (e.g., iPython, Jupyter, Rmarkdown, Quarto). Fall 2024 has changes from previous syllabus now that we have Database Design and Introduction to Programming. Nonetheless, the previous syllabus is still useful as it links to course materials that show the teaching approach and type of assignments. http://howisonlab.github.io/datawrangling/#Schedule_of_classes
Exhibits are a powerful way for libraries, archives, museums, and cultural institutions to engage the public with their collections. This course offers students the opportunity to plan and install an exhibit, focusing on objectives such as: crafting a narrative around physical objects; drafting exhibit text; accommodating media preservation issues; building basic display supports; and publicizing the exhibit. Students will learn about the historical origins of modern-day exhibit practices and will visit and evaluate current exhibits on campus and in the Austin area.
Study of audio recording through a chronological examination of the development of recording; basic care and preservation of recordings; Preservation of audio archives; and stability concerns of audiovisual media.
Ever wondered how libraries and archives safeguard historical materials for future generations? Preservation is the answer. In this course, students learn collections care strategies that enable today’s information stewards to protect our growing cultural record. Scientific foundations and practical exercises will address common preservation challenges, such as environmental control, mold, insects, pollutants, and light damage. Modern topics in health, safety, and sustainability will highlight the developing nature of the field. Students will evaluate preservation risks for books, paper, electronic media, and other collections materials.