Course Offerings
An introduction to sociotechnical perspectives on information systems, their effects, and how we intervene to make them better.
No description provided.
Online communities are important to our cultural, social, and economic lives and especially to how we find and share information. Yet they also threaten our well-being and may undermine critical social institutions as well as the integrity of public discourse. This course is an interdisciplinary inquiry that seeks to understand online communities. It covers the history of online communities from their origins in the pre-Internet to the rise of social media platforms and contemporary challenges and also the social, psychological, and human-computer interaction research that both explains the practical barriers to building an online community and motivates technical and organizational designs that aim to overcome them.
Explore common data collection, management, and sharing practices around information technology and emerging technologies such as AI. Students will gain hands on experiences with collecting, analyzing, and managing user data in ethical and responsible manners. Students will design data-driven systems that are centered around user consent, transparency, and social responsibilities.
Critical exploration of the intersection between digital technologies and information access in emerging economies. Investigate the historical, socio-economic, and ethical dimensions of digital adoption in the Global South, analyzing its impact on governance, economies, cultures, and societal dynamics. Emphasis on critical thinking, ethical considerations, and collaborative approaches to address challenges such as the digital divide(s), data sovereignty, and technology-driven inequality. Through case studies and practical exercises, students will develop skills in digital research, global cultures, policy analysis, and technology innovation with a focus on promoting inclusive and sustainable digital transformation in Global South contexts. Also offered as I 320J.
Practical skills and understandings required to effectively work with open source software and understand the projects that build them. Includes git-based collaboration as well as conceptual understanding of licenses, security, technical and social processes in open source development. Class projects involve working with digital trace data from open source repositories. Also offered as Informatics 320D.
This course examines disability beyond digital accessibility (i.e., web accessibility, user interface design) and focuses on disability from an organizational and socio-technical point of view. Students will learn about the legislation and policies impacting accessibility, the models that shape our perceptions of disability, and review case studies of disability in several contexts. In addition to the broader types of disabilities, we will consider other forms of disabilities (permanent, situational, temporary). Students will engage in class discussions, small group activities, homework assignments, and give oral presentations. Students will be equipped with the knowledge and skills to apply methods and models of accessibility in the workplace in various fields, including software design, data science, AI, and library science.
This class explores how to make arguments about and through design. The first half focuses on values, criticism, ethics, and analysis of technology, the latter portion aims to help a soon-to-graduate technologist envision positive social impact in a mission-driven enterprise. Students will practice synthesizing ethical tech considerations – as they will have to do for the rest of their careers – and combining this with an organizational mindset. Through exercises, role-playing, discussions, guest lectures from activist technologists, and wide-ranging readings, students will practice connecting broader implications of their designs with technical choices. Design for Social Impact seeks to arm students with diverse ways of reflecting on their authorial relationship to technology, drawing from art and design to political science and anthropology. Course participants will be encouraged to focus on areas of personal interest, enumerating the social, political, and economic parameters of particular technical systems: parameters that are as important as power consumption, usability, or efficiency.
Effective application of social and technical methods of analysis to specific existing systems with inseparable technical and social components to enable improvement. Covers techniques such as modeling, interviewing, observation, trace analysis, and benchmarking.
Explore common data collection, management, and sharing practices in information technology and emerging technologies, such as search engines and AI systems. Students will read papers and engage in discussions about the pros and cons of established data practices and learn about the three main components of responsible data management: 1) consent and ownership, 2) privacy and anonymity, and 3) broader impact. Students will also practice how to collect data, make data-driven decisions, and design data-driven products through group projects as UX designers, researchers, and data scientists. The course will bring in interdisciplinary perspectives with guest speakers from archive science, engineering, and respponsible AI, to provide a holistic view of broader data ecosystems and infrastructures.
Develop prompts for text and image generation through an iterative cycle, making the most of foundation models, including large language models and diffusion models. Overview of the field of prompt engineering, including historical development, ethical dilemmas, and the creation of chatbots.
Develop prompts for text and image generation through an iterative cycle, making the most of foundation models, including large language models and diffusion models. Overview of the field of prompt engineering, including historical development, ethical dilemmas, and the creation of chatbots.
The current Web has experienced tremendous changes to connect data, people, and knowledge. There are a couple of exciting efforts trying to bring the Web to its full potential. The Semantic Web is one of them which is heavily embedded in the Artificial Intelligence area with the long-term goal to enhance the human and machine interaction by representing data semantics, integrating data silos, and enabling intelligent search and discovery. This course aims to provide the basic overview of the Semantic Web in general, and data semantics in particular, and how they can be applied to enhance data integration and knowledge inference. Ontology is the backbone of the Semantic Web. It models the semantics of data and represents them in markup languages proposed by the World Wide Web Consortium (W3C). W3C plays a significant role in directing major efforts at specifying, developing, and deploying standards for sharing information. Semantically enriched data paves the crucial way to facilitate the Web functionality and interoperability. This course contains three parts: Semantic Web language, RDF graph database (i.e., RDF triple store), and its applications. The fundamental part of the course is the Semantic Web languages. It starts from XML and goes further to RDF and OWL. The RDF graph database part introduces different APIs of Jena and its reasoners. The application part showcases current trends on semantic applications. Prerequisites Basic knowledge of HTML and XML is desired. Course Objectives This course aims to develop a critical appreciation of semantic technologies as they are currently being developed. At the end of this course, students should be able to: • sketch the overall architecture of the Semantic Web. • identify the major technologies of the Semantic Web and explain their roles. • illustrate the design principles of the Semantic Web by applying the technologies. • understand certain limitations of the Semantic Web technologies, and be aware of the kinds of services it can and cannot deliver. Course aims are achieved through: • Lectures covers basic knowledge of the Semantic Web • Projects applying semantic technologies to concrete problems of information delivery and use • Assignments of practicing and utilizing key semantic technologies
Introduction to combining human and machine intelligence to benefit people and society. Explore cutting-edge research on a number of subjects related to human-AI interaction, including the psychological and societal impacts of AI as well as design guidelines and methods for human-centered AI.