Urban Air Mobility (UAM) envisions integrating the skyscape into the transportation network and encompasses services such as delivery drones, on-demand shared mobility by Vertical-Take Off and Landing (VTOL) aircraft for intra-city passenger trips, and, in the longer run, electric and autonomous VTOLs. This possible modal alternative provides a safe, reliable, and environmentally sound option to reduce surface-level congestion. Nevertheless, the history of transportation infrastructure development shows that it is imperative to design transportation infrastructures with the community to find the best balance between these sociotechnical requirements. Much research shows that the design of transportation systems has a long-lasting, often discriminatory effect that reinforces existing socio-economic inequality. As UAM is being developed as a new transportation mode, we are at an opportune moment to design its infrastructure to provide effective and equitable air mobility for all, avoiding our past mistakes. This project will focus on understanding the preferences, attitudes, and concerns of all stakeholders of UAM, including the potential users of UAM, the general public in different communities who may be positively and/or adversely affected by UAM, policymakers, and city planners. The knowledge elicited from the stakeholders will guide the design of an open-source Computer Aided Planning tool that policy-makers and urban planners can use to design UAM infrastructure that accommodates communities? priorities and enables transportation equity. While the timeline for UAM may be in the future, its deployment may entail significant future investment in infrastructure which makes inclusion of equity considerations and early community engagement critical. We propose a ''Community-in-the-Loop Integrative Framework for Fair and Equitable Urban Air Mobility (UAM) Infrastructure Design''. Our integrative framework will develop methods to engage with key stakeholders to address significant socio-technical challenges, including (a) understanding the community preferences and desiderata in terms of necessary considerations for equitable mobility, (b) developing novel machine learning techniques to generate design options that optimize for community desiderata efficiently and (c) devising community-driven evaluative measures and trade-off decision mechanisms. We address these challenges by drawing from urban and transportation engineering, aerospace, and computer and information sciences. The final product of our framework is an open-source Computer Aided Planning tool called VertiCAP. VertiCAP will be equipped with novel machine learning-based algorithms to navigate complex design space options, including long-term decisions (i.e., allocation of UAM airports, also known as vertiports), medium-term decisions (i.e., design of air space), and short-term decisions (i.e., air-traffic control). We will establish a ''community council'' representing different stakeholders. Through continuous interactions with the community council, we will evaluate and demonstrate the effectiveness of the developed VertiCAP tool in the City of Austin, TX and Southern California.