Course Offerings
No description provided.
The Texas Cybersecurity Clinic is a two-semester sequence that first equips students with the technical and business skills of an entry-level cybersecurity analyst (semester 1) and then partners them in (supervised) teams with a small local business, municipal government, nonprofit to render pro bono cybersecurity services (semester 2). During the first semester, students will learn key cybersecurity defense concepts and skills, such as vulnerability assessment, network configuration and security, access controls, authorization techniques, responding to a cyberattack, business planning, and penetration testing. Students will also learn how to form an effective cybersecurity operations team and communicate with organization and business leaders and employees about essential cybersecurity controls and functions. By the conclusion of this course, students will be prepared to work within their assigned teams to assess, design, and render a cybersecurity improvement project plan for their client organization next semester.
The Texas Cybersecurity Clinic is a two-semester sequence that first equips students with the technical and business skills of an entry-level cybersecurity analyst (semester 1) and then partners them in (supervised) teams with a Central Texas-based small business, municipal government, or nonprofit to render pro bono cybersecurity services (semester 2). During the first semester, students will learn key cybersecurity defense concepts and skills, such as vulnerability assessment, network configuration and security, access controls, authorization techniques, responding to a cyberattack, business planning, and penetration testing. Students will also learn how to form an effective cybersecurity operations team and communicate with organization leaders and employees about essential cybersecurity controls and functions. During the second semester, students work within their assigned teams to assess, design, and render a cybersecurity improvement project plan for their designated client organization, building cybersecurity capacity and bolstering the client organization’s ability to recover from a cyber incident long-term.
INF 385E: Information Architecture and Design
This course explores the fundamental principles and practical applications of Information Architecture (IA). Drawing from the seminal work "Information Architecture: For the Web and Beyond" by Louis Rosenfeld, Peter Morville, and Jorge Arango, students will delve into the essential concepts, methodologies, and best practices shaping the organization and presentation of information in digital environments. Simply, this course addresses how to make content organized and findable based on human understanding. Throughout the course, students will examine the critical role of IA in enhancing user experience, facilitating navigation, and optimizing content discoverability. Topics covered include information organization, navigation design, metadata implementation, taxonomy development, and user-centered design principles. Through a combination of theoretical discussions, case studies, hands-on exercises, and a real project with a real client and real world constraints, students will gain proficiency in designing effective IA solutions tailored to diverse user needs and contexts. Emphasis will be placed on understanding user behavior, conducting user research, and iteratively refining IA structures to align with evolving user requirements and organizational goals. Course Objectives: Gain a comprehensive understanding of Information Architecture principles and methodologies. Learn how to analyze and evaluate existing IA structures in digital environments. Develop proficiency in designing and implementing effective IA solutions for websites and digital products. Explore techniques for conducting user research and applying user-centered design principles to IA. Understand the role of IA in enhancing usability, findability, and overall user experience. Acquire practical skills in wireframing, prototyping, and usability testing within an IA context. Explore emerging trends and technologies shaping the field of Information Architecture.
INF 385P: Usability
This course will give students a foundational introduction to user experience (also known as UX, CX, HCI) and introduce some of the core UX research methods in use today, as well as applying these methods to a product to create a final presentation that can hopefully be used in their portfolio/job seeking adventures. Accordingly, the class will cover 5 major areas: 1. Have an in-depth understanding of some primary UX methods relevant to product development (e.g. Heuristic evaluation, Moderated User testing, UX Benchmarking). 2. Understand the principles of other important UX tools/methods (e.g. Information architecture tests (card-sorts), RITE testing, Competitive Analysis, Thematic coding of qualitative data, etc.). 3. Have a working understanding of the most frequently used UX methods at each point of the development lifecycle, with a specific focus on which methods are best suited to evaluative research. 4. Learn the scientific underpinnings of the various methodologies, including the specific advantages and disadvantages of each. 5. The “real world” application of these skills to industry-paced projects
A practical introduction and guide for using statistics to solve quantitative problems in user research. Many designers and user researchers view usability and user research as qualitative activities, which do not use formulas and numbers. However, usability practitioners and user researchers are increasingly expected to quantify the benefits of their efforts. The impact of good and bad designs can be quantified in terms of user performance, task completion rates and times, perceived user satisfaction. The course will address questions frequently faced by user researchers, such as, how to compare usability of products for A/B testing and competitive analysis, how to measure the interaction behavior and attitudes of users, how to estimate the number of users needed for usability testing. The course will introduce students to a foundation for statistical theories and the best practices needed to apply them. It will cover descriptive statistics, confidence intervals, standardized usability questionnaires, correlation, regression, and analysis of variance. It will also address how to effectively communicate the quantitative results.