Course Offerings
In this class, students will first learn some fundamentals of cultural heritage informatics and be introduced to the major kinds of institutions in this space: galleries, libraries, archives, and museums. Students will also see case studies of how fundamental concepts like access or metadata get used in contemporary examples.
This course we will explore the concepts and values of open knowledge and knowledge equity and how they intersect with the ongoing evolution of digital environments. Open knowledge can be described as information that is freely available to the public to use and redistribute. Knowledge equity extends beyond information access and use to also include what is valued as knowledge, whom that knowledge represents, and who creates it.
Engage in modern ethical dilemmas within archives, libraries, and museums, considering issues of collections management and preservation within changing cultural frameworks. This I 320C topic carries the Cultural Diversity in the United States flag. The purpose of the Cultural Diversity in the United States Flag is for students to explore in-depth the shared practices and beliefs of one or more underrepresented cultural groups subject to persistent marginalization. In addition to learning about these diverse groups in relation to their specific contexts, you’ll also reflect on your own cultural experiences.
This course introduces digital archival collections that can be accessed and used as data for research and inquiry. Topics will focus on the transformation, analysis, and interpretation of digital cultural heritage in archival contexts, including digitization, web archiving, software emulation, and data archiving. From text messages, Spotify playlists, to the President's tweets--how are digital traces collected, preserved and managed by archives? What are the ethics of managing digital archives and making them accessible to researchers, the public, and machines?
Explore common data collection, management, and sharing practices in information technology and emerging technologies, such as search engines and AI systems. Students will read papers and engage in discussions about the pros and cons of established data practices and learn about the three main components of responsible data management: 1) consent and ownership, 2) privacy and anonymity, and 3) broader impact. Students will also practice how to collect data, make data-driven decisions, and design data-driven products through group projects as UX designers, researchers, and data scientists. The course will bring in interdisciplinary perspectives with guest speakers from archive science, engineering, and respponsible AI, to provide a holistic view of broader data ecosystems and infrastructures.
*THIS TOPIC WILL NO LONGER BE OFFERED AFTER SPRING 2025In this course, we will work to understand and address the challenges of misinformation, disinformation, and strategic manipulation in online environments. First, we will work to develop a deep understanding of the problem space. We will read and discuss existing research (both historical and contemporary) on how and why misinformation and disinformation spread. Next, we will explore the process, both personal and interpersonal, by which these issues can be approached and addressed in our own lives. This will involve reflecting on our own presuppositions, beliefs, and biases about information; and doing a project in which we apply the principles of Human-Centered Design to investigate different design directions for addressing misleading information. Students will gain important contextual knowledge and hands-on design experience that they can take into future professional domains (from education to policy to technology), where they can contribute to building more trustworthy information systems.
Introduction to combining human and machine intelligence to benefit people and society. Explore cutting-edge research on a number of subjects related to human-AI interaction, including the psychological and societal impacts of AI as well as design guidelines and methods for human-centered AI.