Course Offerings
Explore designing and implementing information technologies to improve healthcare delivery, healthcare management, and health outcomes. Offered on the letter-grade basis only.
Overview of public health and the information systems used to achieve public health goals. This course is divided into three parts: (1) overview of public health, (2) fundamentals of public health informatics, and (3) public health information systems.
Leveraging medical claims data to guide population health interventions, primarily through the use of machine learning models. The course will focus on the data processing pipeline, and no prerequisite knowledge of machine learning models is required
Explore principles and methodologies in health informatics research, including various approaches to data analysis, research design, and the application of informatics to health. Develop skills in reading, reviewing, and writing scientific publications, identifying research questions, initiating research, and communicating findings.
The course is designed for undergraduate students who are interested in understanding, analyzing, designing, evaluating, or developing technologies to serve the health needs of general consumers. It covers the concept of consumer health informatics, health behavior theories, health information seeking and information retrieval, various forms of consumer health systems, and the design and evaluation of such systems.
New Topic for Spring 2025. Description pending submission by instructor, Steve Hershman. Also offered as Informatics 320D.
INF 380P: Introduction to Programming
The class focuses on developing problem solving skills using Python as a programming language. Starting from procedural function development, we also explore object-oriented techniques, and discuss simple data structures that are often used in software development. The students usually do a few programming assignments, take a midterm, and submit a final project.
This class explores various data science models, both traditional and the state of the art techniques. The course is designed to provide mathematical and computational basis such as Linear Algebra, Optimization techniques, and probabilistic modeling for different types of machine learning models. The goal of the class is provide a foundational basis for data science techniques. The class focuses on PSETs and a final data science project.
Learning key data wrangling maneuvers in abstract and implementations in SQL, Excel, R Tidyverse, and Python Pandas. Maneuvers in data transformations include Nest, Pivot, Mutate (inc. separate/unite), Group/Summarize and Rectangling. Projects include working with "wild caught" data datasets (usually CSV or JSON) and computational notebook environments (e.g., iPython, Jupyter, Rmarkdown, Quarto). Fall 2024 has changes from previous syllabus now that we have Database Design and Introduction to Programming. Nonetheless, the previous syllabus is still useful as it links to course materials that show the teaching approach and type of assignments. http://howisonlab.github.io/datawrangling/#Schedule_of_classes