Course Offerings
This course offers students in Information Science a comprehensive exploration into the theories, techniques, and tools of data visualization. It is designed to equip students with the skills to effectively communicate complex information visually, enabling data analysis and decision-making. Through a combination of lectures, hands-on projects, and case studies, students will learn how to design and implement effective and aesthetically appealing data visualizations for a variety of data types and audiences. Upon successful completion of this course, students will be able to: • Understand the principles and psychology of visual perception and how they influence data visualization. • Critically evaluate the effectiveness of different data visualization techniques for varying data types and user needs. • Master the use of leading data visualization tools and libraries such as D3.js, or Tableau. • Develop interactive dashboards and reports that effectively communicate findings to both technical and non-technical audiences. • Apply design principles to create visually appealing, accurate, and accessible data visualizations.
Explore common data collection, management, and sharing practices in information technology and emerging technologies, such as search engines and AI systems. Students will read papers and engage in discussions about the pros and cons of established data practices and learn about the three main components of responsible data management: 1) consent and ownership, 2) privacy and anonymity, and 3) broader impact. Students will also practice how to collect data, make data-driven decisions, and design data-driven products through group projects as UX designers, researchers, and data scientists. The course will bring in interdisciplinary perspectives with guest speakers from archive science, engineering, and respponsible AI, to provide a holistic view of broader data ecosystems and infrastructures.
*THIS TOPIC WILL NO LONGER BE OFFERED AFTER SPRING 2025In this course, we will work to understand and address the challenges of misinformation, disinformation, and strategic manipulation in online environments. First, we will work to develop a deep understanding of the problem space. We will read and discuss existing research (both historical and contemporary) on how and why misinformation and disinformation spread. Next, we will explore the process, both personal and interpersonal, by which these issues can be approached and addressed in our own lives. This will involve reflecting on our own presuppositions, beliefs, and biases about information; and doing a project in which we apply the principles of Human-Centered Design to investigate different design directions for addressing misleading information. Students will gain important contextual knowledge and hands-on design experience that they can take into future professional domains (from education to policy to technology), where they can contribute to building more trustworthy information systems.
Introduction to combining human and machine intelligence to benefit people and society. Explore cutting-edge research on a number of subjects related to human-AI interaction, including the psychological and societal impacts of AI as well as design guidelines and methods for human-centered AI.