Course Offerings
An introduction to sociotechnical perspectives on information systems, their effects, and how we intervene to make them better.
No description provided.
Online communities are important to our cultural, social, and economic lives and especially to how we find and share information. Yet they also threaten our well-being and may undermine critical social institutions as well as the integrity of public discourse. This course is an interdisciplinary inquiry that seeks to understand online communities. It covers the history of online communities from their origins in the pre-Internet to the rise of social media platforms and contemporary challenges and also the social, psychological, and human-computer interaction research that both explains the practical barriers to building an online community and motivates technical and organizational designs that aim to overcome them.
Explore common data collection, management, and sharing practices around information technology and emerging technologies such as AI. Students will gain hands on experiences with collecting, analyzing, and managing user data in ethical and responsible manners. Students will design data-driven systems that are centered around user consent, transparency, and social responsibilities.
Critical exploration of the intersection between digital technologies and information access in emerging economies. Investigate the historical, socio-economic, and ethical dimensions of digital adoption in the Global South, analyzing its impact on governance, economies, cultures, and societal dynamics. Emphasis on critical thinking, ethical considerations, and collaborative approaches to address challenges such as the digital divide(s), data sovereignty, and technology-driven inequality. Through case studies and practical exercises, students will develop skills in digital research, global cultures, policy analysis, and technology innovation with a focus on promoting inclusive and sustainable digital transformation in Global South contexts. Also offered as I 320J.
Practical skills and understandings required to effectively work with open source software and understand the projects that build them. Includes git-based collaboration as well as conceptual understanding of licenses, security, technical and social processes in open source development. Class projects involve working with digital trace data from open source repositories. Also offered as Informatics 320D.
This course examines disability beyond digital accessibility (i.e., web accessibility, user interface design) and focuses on disability from an organizational and socio-technical point of view. Students will learn about the legislation and policies impacting accessibility, the models that shape our perceptions of disability, and review case studies of disability in several contexts. In addition to the broader types of disabilities, we will consider other forms of disabilities (permanent, situational, temporary). Students will engage in class discussions, small group activities, homework assignments, and give oral presentations. Students will be equipped with the knowledge and skills to apply methods and models of accessibility in the workplace in various fields, including software design, data science, AI, and library science.
This class explores how to make arguments about and through design. The first half focuses on values, criticism, ethics, and analysis of technology, the latter portion aims to help a soon-to-graduate technologist envision positive social impact in a mission-driven enterprise. Students will practice synthesizing ethical tech considerations – as they will have to do for the rest of their careers – and combining this with an organizational mindset. Through exercises, role-playing, discussions, guest lectures from activist technologists, and wide-ranging readings, students will practice connecting broader implications of their designs with technical choices. Design for Social Impact seeks to arm students with diverse ways of reflecting on their authorial relationship to technology, drawing from art and design to political science and anthropology. Course participants will be encouraged to focus on areas of personal interest, enumerating the social, political, and economic parameters of particular technical systems: parameters that are as important as power consumption, usability, or efficiency.
Effective application of social and technical methods of analysis to specific existing systems with inseparable technical and social components to enable improvement. Covers techniques such as modeling, interviewing, observation, trace analysis, and benchmarking.
Explore common data collection, management, and sharing practices in information technology and emerging technologies, such as search engines and AI systems. Students will read papers and engage in discussions about the pros and cons of established data practices and learn about the three main components of responsible data management: 1) consent and ownership, 2) privacy and anonymity, and 3) broader impact. Students will also practice how to collect data, make data-driven decisions, and design data-driven products through group projects as UX designers, researchers, and data scientists. The course will bring in interdisciplinary perspectives with guest speakers from archive science, engineering, and respponsible AI, to provide a holistic view of broader data ecosystems and infrastructures.
*THIS TOPIC WILL NO LONGER BE OFFERED AFTER SPRING 2025In this course, we will work to understand and address the challenges of misinformation, disinformation, and strategic manipulation in online environments. First, we will work to develop a deep understanding of the problem space. We will read and discuss existing research (both historical and contemporary) on how and why misinformation and disinformation spread. Next, we will explore the process, both personal and interpersonal, by which these issues can be approached and addressed in our own lives. This will involve reflecting on our own presuppositions, beliefs, and biases about information; and doing a project in which we apply the principles of Human-Centered Design to investigate different design directions for addressing misleading information. Students will gain important contextual knowledge and hands-on design experience that they can take into future professional domains (from education to policy to technology), where they can contribute to building more trustworthy information systems.
Introduction to combining human and machine intelligence to benefit people and society. Explore cutting-edge research on a number of subjects related to human-AI interaction, including the psychological and societal impacts of AI as well as design guidelines and methods for human-centered AI.